SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Complex Variables & NumericalMethods (23HS0833)Course & Branch: B.Tech - EEE

Year & Sem: II-B.Tech & I-Sem

Regulation: R23

<u>UNIT –I</u> COMPLEX VARIABLE – DIFFERENTIATION

1	a) Define analytic function.	[L1][CO1]	[2M]
	b) State Cauchy-Riemann (C-R) equations in cartesian coordinates.	[L1][CO1]	[2M]
	c) Find where the function $w = \frac{1}{z}$ ceases to be analytic.	[L1][CO1]	[2M]
	d) Define harmonic function.	[L1][CO1]	[2M]
	e) Prove that $f(z) = \overline{z}$ is not an analytic at any point.	[L5][CO1]	[2 M]
2	a) Show that z^2 is an analytic for all z.	[L2][CO1]	[5M]
	b) Determine p such that the function	[L5][CO1]	[5M]
	$f(z) = \frac{1}{2}log(x^2 + y^2) + itan^{-1}\left(\frac{px}{y}\right)$ is an analytic function.		
3	a) Find whether $f(z) = sinxsiny - icosxcosy$ is an analytic or not.	[L1][CO1]	[5M]
	b) Determine whether the function $f(z) = 2xy + i(x^2 - y^2)$ is analytic.	[L5][CO1]	[5M]
	a) Show that $u = e^{-x}(x \sin y - y \cos y)$ is harmonic function.	[L2][CO1]	[5M]
4	b) Show that $u = 2 \log (x^2 + y^2)$ is harmonic function.	[L2][CO1]	[5M]
5	Verify that $u = x^2 - y^2 - y$ is harmonic in the whole complex plane and find a conjugate harmonic function <i>v</i> of <i>u</i> ?	[L4][C01]	[10M]
6	Prove that, if $u = x^2 - y^2$: $v = \frac{-y}{x^2 + y^2}$ both u and v satisfy Laplace's equation, but $u + iv$ is not a analytic function	[L5][CO1]	[10M]
7	Show that i) $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} = 4 \frac{\partial^2}{\partial z \partial \bar{z}}$. ii) $\left(\frac{\partial^2}{\partial z} + \frac{\partial^2}{\partial z}\right) f(z) ^2 = 4 f^1(z) ^2$ where $f(z)$ is an analytic function.	[L1][CO1]	[10M]
8	Prove that the function $f(z)$ defined by		[10M]
	$f(z) = \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2}, (z \neq 0) \text{ and } f(z) = 0, (z = 0) \text{ is continuous and}$ the Cauchy-Riemann equations are satisfied at origin.		
9	Find 'a' and 'b' if $f(z) = (x^2 - 2xy + ay^2) + i(bx^2 - y^2 + 2xy)$ is analytic. Hence find $f(z)$ interms of z.	[L1][CO1]	[10M]
10	a) Determine the analytic function whose real part is e ^x cosy.	[L5][CO1]	[5M]
	b) Find the analytic function whose imaginary is $\frac{x-y}{x^2+y^2}$.	[L1][CO1]	[5M]
11	a) Find the analytic function $f(z)$ interms of z whose real part is $x^3 - 3xy^2$.	[L1][CO1]	[5M]
	b) Find the analytic function whose imaginary part is $e^{x}(x \sin y + y \cos y)$.	[L1][CO1]	[5M]

<u>UNIT –II</u> COMPLEX VARIABLE – INTEGRATION

1	a) Define Line integral	[L1][CO2]	[2M]
	b) State Cauchy's integral theorem.	[L1][CO2]	[2M]
	c) State Cauchy Integral formula.	[L1][CO2]	[2M]
	d) Expand e^z as Taylor's series in powers of (z-3).	[L2][CO2]	[2M]
	e) State Cauchy Residue theorem.	[L1][CO2]	[2 M]
2	a) Evaluate $\int_{(0,0)}^{(1,3)} 3x^2 y dx + (x^3 - 3y^2) dy$ along the curve $y = 3x$.	[L5][CO2]	[5M]
	b) Evaluate $\int_0^{1+i} (x^2 - iy) dz$ along the path $y = x$.	[L5][CO2]	[5M]
3	Evaluate $\int_0^{3+i} z^2 dz$, i) along the line $y = \frac{x}{3}$ ii) along the parabola $x = 3y^2$.	[L5][CO2]	[10M]
4	Show that $\int_c (z+1)dz = 0$ where 'c' is the boundary of the square whose vertices at the points $z = 0, z = 1, z = 1 + i, z = i$.	[L1][CO2]	[10M]
5	a) Evaluate $\int_c \frac{e^{2z}}{(z-1)(z-2)} dz$ where 'c' is the circle $ z = 3$.	[L5][CO2]	[5M]
	b) Evaluate $\int_c \frac{e^z}{(z-1)(z-4)} dz$ where 'c' is $ z = 2$.	[L5][CO2]	[5M]
6	Evaluate $\int_c \frac{z-3}{z^2+2z+5} dz$ where 'c' is the circle i) $ z = 1$ ii) $ z+1-i = 2$	[L5][CO2]	[10M]
7	a) Expand $f(z) = sinz$ in Taylor's expansion of in powers of $\left(z - \frac{\pi}{4}\right)$.	[L2][CO2]	[5M]
	b) Expand $f(z) = \frac{1}{z^2 - z - 6}$ in Taylor's series about <i>i</i>) $z = -1$ <i>ii</i>) $z = 1$.	[L2][CO2]	[5M]
8	a) Find the Laurent expansion of $\frac{1}{z^2-4z+3}$ for i) $1 < z < 3$ ii) $ z < 1$.	[L1][CO2]	[5M]
	b) Determine the poles of the function i) $\frac{z}{\cos z}$ ii) cotz.	[L5][CO2]	[5M]
9	a) Find the poles of the function $f(z) = \frac{1}{(z+1)(z+3)}$ and residues at each poles.	[L1][CO2]	[5M]
	b) Find the residue of $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ at each pole.	[L1][CO2]	[5M]
10	Evaluate $\oint_{c} \frac{4-3z}{z(z-1)(z-2)} dz$ where 'c' is circle $ z = \frac{3}{2}$ using residue theorem.	[L5][CO2]	[10M]
11	a) Evaluate $\oint_c \frac{z-3}{z^2+2z+5} dz$ where 'c' is circle given by $ z + 1 + i = 2$ using Residue theorem.	[L5][CO2]	[5M]
	b) Evaluate $\int_0^{2\pi} \frac{d\theta}{2+\cos\theta}$.	[L5][CO2]	[5M]

<u>UNIT –III</u>

SOLUTION OF ALGEBRAIC & TRANSCENDENTAL EQUATIONS

1	a) Find the root of the equation $x^2 - 5 = 0$ by using Bisection method.	[L1][CO3]	[2M]
	b) Write the formula to find the root of an equation by Regula Falsi method.	[L1][CO3]	[2M]
	c) Write the formula to find the root of an equation by Newton Raphson's method.	[L1][CO3]	[2M]
	d) Compare Jacoby and Gauss Seidel methods.	[L5][CO4]	[2M]
	e) Solve by Jacoby method [Only two iterations] x + y = 3; $3x - 2y = 4$.	[L3][CO4]	[2 M]
2	a) Find a positive root of the equation $x^3 - x - 1 = 0$ by Bisection method.	[L1][CO3]	[5M]
	b) Find out the square root of 25 given $x_0 = 2.0$, $x_1 = 7.0$ using Bisection method.	[L1][CO3]	[5M]
3	a) Find a positive root of the equation $x^4 - x - 10 = 0$ by iteration method.	[L1][CO3]	[5M]
	b) Solve $x^3 - 2x - 5 = 0$ for a positive root by iteration method.	[L3][CO3]	[5M]
4	Find the root of the equation $x e^{x} = 2$ using Regula-falsi method.	[L1][CO3]	[10M]
5	Find the root of the equation $x^3 - x - 4 = 0$ using False position method.	[L1][CO3]	[10M]
6	Find a real root of the equation $xtanx+1=0$ using Newton – Raphson method.	[L1][CO3]	[10M]
7	Find a real root of the equation $e^x sinx = 1$ using Newton – Raphson method.	[L1][CO3]	[10M]
8	Solve the following system of equations by Jacobi method 27x + 6y - z = 85; $x + y + 54z = 110$; $6x + 15y + 2z = 72$.	[L3][CO4]	[10M]
9	Solve the following system of equations by Jacobi method 2x - 3y + 20z = 25; $20x + y - 2z = 17$; $3x + 20y - z = -18$.	[L3][CO4]	[10M]
10	Apply Gauss-Siedel iteration method to solve the equations 20x + y - 2z = 17; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$.	[L3][CO4]	[10M]
11	Solve the following system of equations by Gauss-Siedel method 4x + 2y + z = 14; $x + 5y - z = 10$; $x + y + 8z = 20$.	[L3][CO4]	[10M]

<u>UNIT –IV</u>

INTERPOLATION

1	a) Write Newton's forward interpolation formulae.													[L1][CO5]	[2M]
	b) Construct a forward difference table for the function $y = x^2$ for $x = 0, 1, 2, 3$.											[L3][CO5]	[2M]		
	c) Write Lagrange's interpolation formulae.											[L1][CO5]	[2M]		
	d) State the two normal equation used in fitting a straight line.											[L1][CO5]	[2M]		
	e) Write the normal equations used in fitting a second degree polynomial.												[L1][CO5]	[2 M]	
2	a) Using Newton's forward interpolation formula and the given table of values											[L3][CO5]	[5M]		
	,	x	1		1.4		1.8		2.2						
		f(x)	3.49		4.82		5.96		6.5						
	Obtain	the valu	e of f(x)) whe	$\frac{1}{n x=1}$	6.			0.0						
	h) A malaria	a Navrt	m'a far	, maxand	intom	alati	an farm				a tha t		of / FF	[L3][CO5]	[5M]
	b) Applyll	$\frac{19}{10}$ Newld	-222		$\frac{1}{5}$ – 2	01ati	$\sqrt{7}$	11111 26	i, co	$\frac{1}{\sqrt{0}}$	= 202	o	01 7 5.5		
	given	Inat v 5 -	- 2.23	0; 00	0 - 2.2	149;	v / -	2.0	940	vo -	- 2.02	20.			F1 03 73
3	From the f	following	g table	values	s of x a	and y	y=tan x.	Int	terp	olate	the val	ues o	of y when	[L5][C05]	[10M]
	x=0.12 and	d $x = 0.28$	3.												
		x	0.10		0.15		0.20		0.2	5	0.30)			
		v	0.1003	2 () 1511		0.20	() 25	53	0.30)3			
		У	0.100.	, ().1311	,	J.2027		J.2J	55	0.302	93			
4	a) Using Newton's forward interpolation formula and the given table of values												[L3][CO5]	[5M]	
		x	1.1		1.3		1.5		1.7		1.9				
		f(x)	0.21		0.69		1.25		1.89)	2.61				
	Obtain the value of $f(x)$ when $x=1.4$.														
	b) Use Nev	wton's b	ackwar	d inte	rpolat	ion f	ormula	to f	find	f(32)	given			[L3][CO5]	[5M]
	f(25)=	0.2707, f	£(30)=0	.3027	, f(35)	=0.3	386, f(4	0)=	=0.3	794.	U				
5	Using Lag	grange's	interpo	olatior	n form	ula, f	find the	val	lue (of y(1	0) from	n the	following	[L3][CO5]	[10M]
	table:	[]			-	T	0								
		x	5		6		9		11						
		У	12		13		14		16						
6	The values	s of a fur	nction f	(x) ar	e give	n bel	ow for	cert	tain	value	s of x.	Finc	l the	[L1][CO5]	[10M]
	values of f	(2) using	g Lagra	inge's	interp	olati	on form	nula	a.						
		y	5		6		50		105						
7	By method of least squares fit a straight line to the following data:											[L3][C05]	[10M]		
		Y	1			, 11	2	0	Λ		5]		[][000]	[-~]
				4											
	y 14 27 40 55 68														
8	Fit a straig	ht line y	y = a +	<i>bx</i> for	the fol	lowi	ng data							[L3][CO5]	[10M]
		X	6	7	7	8	8	8		9	9	10]		
		Y	5	5	4	5	4	3		4	3	3			
L												1			

Course Code: 23HS0833

Jourse	couc: 2511c	10055								ſ
9	Fit a second degree polynomial to the following data by method of least square									[10M]
		X	0	1	2	3	4			
		у	1	1.8	1.3	2.5	6.3			
10	Obtain a se	cond degr	ree polyno	mial to the	data by n	nethod of le	east square	¢	[L3][CO5]	[10M]
		X	1	2	3	4	5]		
		Y	10	12	8	10	14			
11	1 Find the curve of best fit of the type $y = ae^{bx}$ to the following data by method of least squares									[10M]
		Х	1	5	7	9	12			
		Y	10	15	12	15	21			

R23

<u>UNIT –V</u>

SOLUTION OF INITIAL VALUE PROBLEMS TO ORDINARY DIFFERENTIAL EQUATIONS

1	a) Write Taylor's formula for $y(x_1)$ to solve $y' = f(x, y)$ with $y(x_0) = y_0$.	[L1][CO6]	[2M]
	b) State Euler formula to solve $y' = f(x, y)$, $y(x_0) = y_0$ at $x = x_0 + h$.	[L1][CO6]	[2M]
	c) Find $y^{(1)}(x)$, by Picard's method, given that $\frac{dy}{dx} = 1 + xy$; $y(0) = 1$.	[L1][CO6]	[2M]
	d) If $\frac{dy}{dx} = y - x$; $y(0) = 2$, $h = 0.2$ then Find the value of k_1 in R–K method of fourth order.	[L1][CO6]	[2M]
	e) Write the formula for Runge – Kutta method of fourth order.	[L1][CO6]	[2 M]
2	Tabulate $y(0.1)$, $y(0.2)$ and $y(0.3)$ using Taylor's series method given that $y^1 = y^2 + x$ and $y(0) = 1$	[L3][CO6]	[10M]
3	Solve $y^1 = x + y$, given $y(1) = 0$ find $y(1.1)$ and $y(1.2)$ by Taylor's series method.	[L3][CO6]	[10M]
4	Find an approximate value of y for $x = 0.1$, $x = 0.2$ by Picard's method, given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.	[L1][CO6]	[10M]
5	Find the values of $y(0.1)$ and $y(0.2)$ by Picard's method given that $y^1 = y - x^2$, $y(0) = 1$.	[L1][CO6]	[10M]
6	Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x}$ given y(1)=2 and find y(2) and y(3).	[L3][CO6]	[10M]
7	Solve by Euler's method $y' = y^2 + x$; $y(0) = 1$.and find $y(0.1)$ and $y(0.2)$	[L3][CO6]	[10M]
8	Using modified Euler's method find $y(0.2)$ and $y(0.4)$, given $y^1 = y + e^x$, $y(0) = 0$	[L3][CO6]	[10M]
9	Using Runge – Kutta method of fourth order, compute $y(0.2)$ from $y^1 = xy$; $y(0) = 1$, taking $h = 0.2$	[L3][CO6]	[10M]
10	Using Runge – Kutta method of fourth order, solve $\frac{dy}{dx} = x^2 - y$, $y(0) = 1$. Find (0.1) and $y(0.2)$.	[L3][CO6]	[10M]
11	Using Runge – Kutta method of fourth order, find $y(0.1)$ and $y(0.2)$ given that $\frac{dy}{dx} = x + y$, $y(0) = 1$.	[L3][CO6]	[10M]

Prepared by: Dept. of Mathematics